On the Equality Assumption of Latent and Sensible Heat Energy Transfer Coefficients of the Bowen Ratio Theory for Evapotranspiration Estimations: Another Look at the Potential Causes of Inequalities
نویسندگان
چکیده
Evapotranspiration (ET) and sensible heat (H) flux play a critical role in climate change; micrometeorology; atmospheric investigations; and related studies. They are two of the driving variables in climate impact(s) and hydrologic balance dynamics. Therefore, their accurate estimate is important for more robust modeling of the aforementioned relationships. The Bowen ratio energy balance method of estimating ET and H diffusions depends on the assumption that the diffusivities of latent heat (KV) and sensible heat (KH) are always equal. This assumption is re-visited and analyzed for a subsurface drip-irrigated field in south central Nebraska. The inequality dynamics for subsurface drip-irrigated conditions have not been studied. Potential causes that lead KV to differ from KH and a rectification procedure for the errors introduced by the inequalities were investigated. Actual ET; H; and other surface energy flux parameters using an eddy covariance system and a Bowen Ratio Energy Balance System (located side by side) on an hourly basis were measured continuously for two consecutive years for a non-stressed and subsurface drip-irrigated maize canopy. Most of the differences between KV and KH appeared towards the higher values of KV and KH. Although it was observed that KV was predominantly higher than KH; there were considerable data points showing the opposite. In general; daily KV ranges from about 0.1 m·s to 1.6 m·s; and KH ranges from about 0.05 m·s to 1.1 m·s. The higher values for KV and KH appear around March and April; and around September OPEN ACCESS Irmak, Kilic, & Chatterjee in MDPI Climate (2014) 2. Copyright © 2014, the authors. Licensee MDPI, Basel, Switzerland. Open access, Creative Commons Attribution license 4.0.
منابع مشابه
The Effect of Geometrical Characteristics of Desiccant Wheel on its Performance
Desiccant wheels are widely used in buildings to control humidity and reduce energy consumption. A model is presented based on transient coupled heat and mass transfer, to model, design and analyze the effects of geometrical characteristics of a honeycombed rotary desiccant wheel and its performance. Governing equations are solved numerically using finite volume method and the model is validate...
متن کاملHeat Transfer Coefficients Investigation for TiO2 Based Nanofluids
From a regression analysis perspective, this paper focused on literature about TiO2 nano particles. The particles on focus entailed those that had been suspended in ethylene glycol and water – at a ratio of 60:40. Indeed, regression analysis has gained application in contexts such as the turbulent Reynolds number, especially with the aim of establishing the impact of the ratio of the...
متن کاملبررسی تأثیر دما و طول اواپراتور و تعداد خمهای لوله حرارتی ضربانی در عملکرد آن
In this study an analytical model for open loop pulsating heat pipes (PHPs) is presented. The model predicts the effect of different parameters such as evaporator temperature, length of evaporator, filling ratio, number of turn and tube diameter on PHP's performance. The governing equations in two phase flow including mass, momentum and energy equations are solved for both one dimensional liqu...
متن کاملEffect of Ambient Condition on the Shower Cooling Tower in Four Type of Climates Condition
Water cooling by ambient takes place with two mechanisms of heat and mass transfer. Using packings at wet cooling towers has disadvantages such as obstruction, reduction of life expectancy and production of algae and fungi. In shower cooling towers types of towers packings are completely removed and water intake is in direct contact and heat transfer takes place in two ways of latent and sensib...
متن کاملEvaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds
Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014